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Abstract. We define a cellular assignment graph to model the channel assignment problem in a cellular network where overlapping
cell segments are included in the model. Our main result is the Capacity-Demand Theorem which shows a channel assignment function
is always possible unless there is a connected subregion of cells and overlap segments containing more channel requests then the total
capacity of all transceivers within or on the boundary of the subregion and covering any part of the subregion with an overlapping segment.
We further describe the simplicity and regularity of our proposed cellular assignment graphs and their accessibility for simulation and
theoretical investigation without artifacts from the overall geographical region boundaries.
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1. Introduction and summary

Channel assignment for wireless mobile units is classically
modeled by assuming the coverage regions of transceivers
partition the plane into disjoint hexagons [3,7,8,11]. The
overlap regions incidental to the coverage regions being
more like circles than hexagons are excluded from the fun-
damental hexagonal lattice. Overlap regions are separately
identified with reference to methods of handoff, but the size
and variation in overlap regions is not easily investigated in
this traditional model [11]. Our approach includes extensive
modeling of various forms of overlap segments and their
regularities in a cellular arrangement. A new approach to
the channel assignment problem in the presence of extensive
overlap between coverage regions is obtained by graph theo-
retic modeling of the cellular assignment problem [6,12,13].

In section 2 we first provide a generic graph model of the
assignment problem for arbitrary placement of transceivers
and coverage regions over the plane. We then provide a
much simplified and regular multipartite graph model for
regular cellular transceiver arrangements with edges denot-
ing relations between transceivers and overlap cell segments
in their coverage regions. The channel assignment problem
on a cellular assignment graph is defined. Our main result is
the Cellular Capacity-Demand Theorem and its proof identi-
fying an efficient channel assignment mechanism. The theo-
rem shows that a channel assignment is always possible un-
less there is a connected region of cells and cell overlap seg-
ments with more internal channel assignment requests than
the total channels available from all transceivers within and
on the boundary of the region and covering any part of the
region with an overlap segment.

In section 3, the structure of underlying cellular assign-
ment graphs for various levels of cell overlap are described.
A simple regular bipartite graph between triangular overlap
regions and boundary transceivers is shown to provide an

ideal model for high traffic congested cellular networks with
considerable cell overlap.

An embedding of this regular bipartite graph on a torus
is given in section 4. This allows that a modest sized finite
regular graph is obtained without boundary artifacts for in-
vestigating channel assignment strategies both theoretically
and by simulation.

In [1] and [9] some surprising channel assignment results
are provided for uniform random placement of mobile units
into a cellular network employing the cellular assignment
results of this paper. The canonical structure and simplic-
ity of our cellular assignment graphs for strong overlap seg-
ments suggests that some deeper theoretical probabilistic re-
sults may be accessible for associated evolutionary random
graph problems [10].

2. Graph models of channel assignment
2.1. Control channel graphs

Let T = {7} be a finite set of transceivers distributed so as
to cover a geographic region, and let M = {MU;,} be a finite
set of mobile units in the region that are in service (turned
on for control tracking).

Figure 1 illustrates a geographic region comprising the
union of nine coverage regions from nine transceiver sites
in the plane. x’s denote in-service mobile units. The mo-
bile unit MU; following the path indicated would be contin-
uously tracked by one or more of transceivers T3, Tg, 13, T5,
Ty, T4 at various times.

The transceiver-mobile control channel graph G(V, E;)
is a connected bipartite graph with vertices V. = MU T
and edges E; = {e;j | T; covers MU; at time t}. Thus,
ejj € E; denotes a control channel (MU;, T;) that may se-
lectively be designated a voice channel in response to a re-
quest from MU;. A mobile may traverse the region from
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Figure 1. A geographic region with mobile units (x’s) covered by from 1 to 4 of the 9 transceivers.
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Figure 2. A control channel graph G(V, E;) with four voice channels of E* highlighted.

any point to any other point and maintain control channels
to one or more transceivers for tracking at all times, only if
the control channel graph is connected at the time the mobile
is about to traverse the region.

Figure 2 illustrates a control channel graph G(V, E;)
with n = |T| transceivers and N = |M]| mobile units in
service.

A star matching is a subset of edges E* C E(G) of a
graph G where the induced subgraph (E*) is a forest with
every component a star whose center is a transceiver. The
edges in a control channel graph G(V, E, t) designated as
voice channels constitute a star matching. Figure 2 illus-
trates four of the voice channel edges by highlighted double
lines.

The channel assignment problem is then: given a con-
trol channel graph G(V, E, ) where each transceiver has

a capacity of k voice channels and where a mobile request
subset MR € M comprises a set of mobile units request-
ing a channel assignment at time 7, is there a star matching
E*(MR) comprising |E*(MR)| = |[MR| edges of G(V, E, 1)
with every mobile unit MU; € MR incident to one edge of
E*(MR) and every transceiver T; € T incident to at most
k edges of E*(MR)?

Theorem 1 (The Channel Assignment Theorem). For the
channel assignment problemin G(V, E, t) with every trans-
ceiver having capacity of k channels, there exists a star
matching E*(MR) for a mobile request set MR € M if and
only if IM'| < k|T(M")| for every subset M’ C MR, where
T(M’) is the set of transceiver vertices adjacent to vertices
of M"in G(V, E, 7).
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Proof. The above theorem is a variation of Hall’s theorem
on systems of distinct representatives [4]. (]

The Channel Assignment Theorem is an existential the-
orem characterizing a solution. Established network flow
procedures provide an algorithm for determining the chan-
nel assignment that is polynomial time in the size of the
graph [2]. The formulation of the channel assignment prob-
lem is impractical from the point of view of data structure
representation. A typical channel assignment graph may
have tens of thousands of vertices corresponding to the in-
service mobile units in a metropolitan area. Furthermore,
this graph changes dynamically over time presenting diffi-
culties in establishing a data structure to represent the graph.
In the next subsection we indicate how the channel assign-
ment problem may be simplified employing the underlying
cellular network structure of a mobile communication sys-
tem. The problem is recast as a cellular channel assignment
problem on a fixed graph with variations over time incorpo-
rated as changes of weight on selected graph edges.

2.2. Regular cellular networks and cellular assignment
graphs

The traditional representation of a cellular communication
network is the hexagonal lattice [7,8,11], where each hexag-
onal cell is covered by a particular transceiver within or on
its boundary. Adjacent hexagonal cells are further taken to
have an overlap region covered by both corresponding trans-
ceivers, where a mobile unit moving between the cells may
be handed off in the overlap region to maintain an ongoing
call. Figure 3 shows such a hexagonal cellular network with
minimal overlap regions explicitly identical.

The regularity of the hexagonal network partitions the
plane into a small number of isomorphic types of cell seg-
ments identified by the multiple number of transceivers
whose coverage areas intersect to define the cell segments.
There are just two types of cell segments illustrated in fig-
ure 3; the hexagonal star 1-segment denoting a region cov-
ered by a single transceiver, and the pointed oval segment
denoting an overlap segment covered by exactly two trans-
ceivers. Allowing that the ideal coverage area for each trans-
ceiver in figure 3 is a circle of minimum radius to cover the
plane, about 80% of each hexagon will be in the 1-segment
and 20% in a 2-segments in this minimal overlap cellu-
lar arrangement. Any mobile unit in a particular cell seg-
ment has the same set of control channels and is a can-
didate for the same voice channels. This allows that the
same information represented in the unwieldy control chan-
nel graph G(V, E, t) may be represented by a smaller bipar-
tite graph between transceiver vertices and cell segment ver-
tices, where mobile unit positions and channel assignments
are reduced to integer weights on the elements of the graph.

Let S = {s;} be the set of cell segments defined by
overlap regions of a cellular network. A cellular as-
signment graph G(V, E) is a connected bipartite graph
with vertices V. = S U T and edges £ = {e;; |
transceiver T covers cell segment s; }.
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Figure 3. The hexagonal cellular layout with minimal sized overlap regions.

Figure 4 shows a channel assignment graph for the
minimal overlap cellular arrangement of figure 3. The
graph is a regular tripartite graph with three classes of
vertices: (i) transceiver vertices of degree 7, (ii) cell
1-segment (hexagonal star) vertices of degree 1, and (iii) cell
2-segments (pointed oval) vertices of degree 2. The regular-
ity derived from the infinite hexagonal lattice on the plane
can be preserved in a useful finite version of the graph ob-
tained by wrapping the lattice on a torus as described in
section 4. Without an appropriate embedding the bound-
ary of a planar region would introduce irregularities into the
graph and likely lead to boundary artifacts in investigations
of channel assignments on such graphs.

A channel assignment (matching) on a cellular assign-
ment graph G(V, E) is a function m: E — Z, where Z
is the set of integers, such that m(e;;) denotes the number
of distinct voice channels of transceiver T; matched to mo-
bile units in cell segment s;. Thus, ), m(e;;) gives the total
number of channels of transceiver 7 currently assigned, and
> jm(eij) gives the total number of mobile units residing in
cell segment s; having an assigned voice channel.

The cellular channel assignment problem is then: given
a channel assignment graph G(V, E) with V. = SU T,
where each transceiver has a capacity of k voice channels
and where there is a demand function d : S — Z request-
ing channel assignments for d(s;) distinct mobile units in
cell segment 5; € S at time 7, is there a channel assign-
ment on G(V, E) satisfying the demand? That is, is there
an m: E — Z such that ), m(e;;) < k for all j, where
Zj m(el-j) = d(sl-) foralli?

An incremental version of channel assignment demand
can be used to investigate strategies for channel assign-
ments when choices exist. The next call assignment prob-
lem assumes that a demand d,: E — Z is satisfied by
a channel assignment m,:E — Z at time 7, and that
dr+1(s") = d;(s") + 1 for some cell segment s’ € S, with
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Figure 4. The channel assignment graph model for the hexagonal cellular layout with minimal sized overlap regions.

dy11(s) = d;(s) fors € S — {s'}. So, the demand at time
7 4 1 is for one new call to be assigned a channel in cell seg-
ment s’. The next call assignment problem asks a sequence
of probing questions about cellular assignment as follows:

1. If the demand d; 41 :S — Z has no solution, what is the
nature of the blockage preventing the new call from ob-
taining a channel assignment?

2. If demand d;4; has a channel assignment solution,
is there a direct solution assigning an available chan-
nel from a transceiver covering s’, that is, is there an
mqy1: E — Z such that for some ¢/ € E incident to
s €S cV,me(e) =1+ me(e), and myyi(e) =
me(e),Ve € E — {€'}?

3. If the demand d; 4+ has a channel assignment solution but
no direct solution, what is the nature of a solution, and is
there a “best” solution?

A characterization of the solution of the next call assign-
ment problem is prefaced by several definitions. A zone (V')
is a connected bipartite subgraph of a cellular assignment
graph induced by the vertex set V' = S'UT’,§ C S,
T’ C T, which is “geometrically closed” in the following
sense. If transceiver T; € T is adjacent to (covers) at least
one cell segment s € §', then T; € T’, and if s € S has the
adjacent (covering) transceiver 7; belonging to 7’ for all T
adjacent to s, then s € §'.

Intuitively, a zone forms a connected geographical region
of cell segments including all transceivers internal or close
enough to the boundary of the region that its coverage area
overlaps the region. The region contains a “hole” only if
the hole includes a transceiver T} ¢ T’, where none of its
covered segments are in V',

The capacity, cap(V'), of a zone (V') is the total number
of channels cap(V’) = k|T’| available for assignment from
transceiver vertices of the zone, and the demand d(V') =
ZSE s d(s) is the total demand over all cell segments of the
zone (V).

A necessary condition for a demand d : S — Z to be sat-
isfied by a channel assignment m : E — Z in the cellular as-
signment graph G(V, E) is that (V') < cap(V') for every
induced subgraph (V') that is a zone of G.

A blocking (or congested) zone (V') for a demand
d:S — Z which can be satisfied by a channel assign-
ment is a zone for which the demand equals the capacity,
d(V") = cap(V’), so that no increase in demand over any
cell segment of the zone can be satisfied. The following the-
orem gives a necessary and sufficient condition for a demand
to be satisfied by a channel assignment.

Theorem 2 (The Cellular Capacity-Demand Theorem). The
demand d:S — Z is satisfied by a channel assignment
m:E — Z in a cellular assignment graph G(V, E) if and
only if d(V") < cap(V’) for every zone (V') of G.

Proof. The proof of the Capacity-Demand theorem follows
from a sequential application of the following lemma on next
call assignments. (]

Lemma 3 (The Next Call Assignment Lemma). Let the de-
mand d; :S — Z be satisfied by the channel assignment
my: E — Z for the cellular assignment graph G(V, E) at
time 7. Then a next call demand at time t+1,d;41:S — Z,
given for a particular s’ € S by dry1(s") = 1 + d:(s'),
dr+1(s) = d;(s), Vs € S — {s'}, has a channel assignment
mr41 : E — Z if and only if there is no blocking zone (V')
with s’ € V’, for the current channel assignment ;.

Furthermore, if there is no blocking zone (V') with s €
V'’ for m; : E — Z, then there is an alternating path

e1(s', T1), ex(T1, 52), e3(s2, 1),
eq(T2, 83), ..., e2j 4105541, Tjt1)
from s’ € V to a transceiver Tj4+1 with an available chan-
nel (i.e., Zi me(ei j+1) < k—1). Then meyi(ezpy1) =

me(ezpy1) + 1 for p = 0,1,2,...,j, and my1(ezp) =
me(ezp) —1forp=1,2,..., j,and my1(e) = m(e) for



A GRAPH THEORETIC APPROACH FOR CHANNEL ASSIGNMENT

alle € E — {ey,e2, ..
ment m,1 for d; 1.

.,e2j+1} provides a channel assign-

Proof. The proof is based on first establishing a feasible
flow in a capacitated network derived from the cellular as-
signment graph G(V, E). A demand source is joined by an
edge to each cell segment s € S C V and labeled with
capacity and flow equal to d;(s). Each edge e € E is la-
beled with capacity k and flow m,(e). Each transceiver
T; € T C V is joined to a channel sink by an edge la-
beled with capacity k and flow ), m(e;;). The flow is then
a maximum flow of value ), g d: (s) in the capacitated net-
work with the edges from the demand source being a min-
imum cut. Now increase the capacity of the edge from the
demand source s’ to d; (s")+1, and search for an augmenting
path. An augmenting path, if found, provides the alternating
path and new channel assignment m,1. If not, the reach-
able set of vertices from the demand source is determined
and augmented as required to establish the claimed blocking
zone (V). O

The search for an augmenting path described in the proof
sketch can be performed by a breadth first search in the graph
G respecting the edge weights m,. This yields a minimum
length path ey, e, . . ., €211 satisfying the conditions of the
lemma when an augmenting path exists. Such a path is
termed a handoff chain as j handoffs are utilized in estab-
lishing the new channel assignment m,41. For j = 0, a
direct channel assignment is possible. When no augment-
ing path exists, the breadth first search finds a reached set of
vertices readily augmented to define the blocking zone (V).

Observation 4. Given a channel assignment m, : E — Z
for the demand d; : S — Z in the cellular assignment graph
G(V, E), and a next call cell segment s’ where d;+1(s") =
d(s") + 1, a breadth first search of a portion of the graph G
finds either:

(i) ablocking (congested) zone (V') with s’ € V' and does
so in time O(|V’|), since the degree of the graph is fixed
and is equal to 6, or

(ii) a satisfying channel assignment m.; employing at
most j handoffs and does so in time O(j 2). This results
from the fact the at depth d the BFS algorithm would
visit 6d new vertices and hence the total search time
for finding a chain of at most j handoffs is proportional
to j2.

3. Overlap levels in regular cellular networks

Defining unit distance in a traditional hexagonal cellular net-
work as the distance between hexagonal cell centers, the
overlap regions of figure 3 are determined by circular trans-
ceiver coverage regions of radius r = +/3/3 sufficient to
reach the hexagonal corners of the cells.
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Figure 5. The dual graph of the hexagonal cellular layout with stronger
overlap regions.

In practice, to provide handoff regions of sufficient ex-
tent for mobile units in the neighborhood of corners of the
hexagons, coverage regions some 15 to 20% greater are
needed. Figure 5 employs such circular coverage regions
of radius r = 0.7 (=20% larger radius) and yields represen-
tative cell segments of three types:

(i) 1-segments are hexagonal stars and cover some 40% of
the region;

(ii) 2-segments are “rectangles” formed by two convex arcs
and two concave arcs and cover some 40% of the re-
gion;

(ii1) 3-segments are “triangles” formed by three convex arcs
and cover some 20% of the region.

The cellular overlap arrangement illustrated in figure 5 is
effectively a weak overlap arrangement.

In mature cellular systems for metropolitan areas with
many relatively close transceivers, it is common to have cov-
erage regions exhibiting greater overlap. For example, the
cell segments of figure 6(b) correspond to radius » = 0.9,
where some 80% of the region is in a nearly triangular cell
segment with the rest of the region distributed over small 1-,
2-, and 4-segments. Figure 6 employs a representative trian-
gle of the planar dual triangular grid (also shown in figure 5)
to illustrate the proportional i-segment sizes for weak over-
lap, r = 0.64 in figure 6(a), and strong overlap, » = 0.90 in
figure 6(b).

Figure 7 shows the portion of service coverage in i-seg-
ments for » = 0.1 to 1.1, indicating the peaks for mostly
single coverage in weak overlap arrangements and mostly
triple coverage in strong overlap arrangements. We note
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Figure 6. Transceiver coverage in a dual triangular cell. (a) r >~ 0.64; (b) r = 0.90.
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Figure 7. Transceiver coverage distribution in terms of cell radius.

that a similar overlap arrangement result can be obtained
for regions formed by 120° directional antenna broadcasts
as well as by 360° omni-directional broadcasts from trans-
ceiver sites. Note that for any radius V3 /3 < r < 1, the cell
segments are of only four symmetric types, designated as
1-segments, 2-segments, 3-segments and 4-segments. The
corresponding bipartite cellular assignment graph is then al-
ways a regular 5-partite graph, having at most five classes
of vertices with each class having vertices all of the same
degree.

The strong overlap arrangement of figure 6(b) suggests
a good approximation is simply to have the full triangles
of the planar dual triangular lattice serve as the overlap 3-
segments, with no other cell segments admitted. This yields
the ideal cellular assignment graph of figure 8 which is reg-
ular bipartite with each triangle vertex adjacent to the three

transceiver vertices at the corners of the planar dual triangu-
lar lattice, and each transceiver vertex incident to six trian-
gle vertices in the cellular assignment graph. It is interest-
ing to notice here that the geometric regularity of the cov-
erage/overlap model leads to the regularity of the cellular
assignment graph model. To avoid boundary anomalies de-
stroying this regularity in a representative finite graph, we
shall wrap the triangular lattice on the torus by a symmetric
embedding.

4. Toroidal embedding and finite regular cellular
assignment graphs

The embedding of the infinite planar hexagonal lattice on the
torus is best illustrated by employing the planar dual trian-
gular lattice. Rather than employing a Cartesian rectangu-
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Figure 9. A hexagonal repeat region of the toroidal embedding.

lar repeat wrapped top to bottom and left to right, greater
symmetry is obtained by having the repeat pattern itself be a
hexagon of triangular lattice cells, as illustrated in figure 9.
The wrapping identifies opposite sides of the hexagonal re-
peat pattern as shown and is obtainable by cut and paste
methods as illustrated in [5]. Such a hexagonal repeat pattern
is identified by the distance r from the center to the bound-
ary, with = 3 in figure 9. There are then 672 triangular
cells in the repeat pattern, and 3r2 distinct triangular grid
vertices, noticing the double and triple repeat grid vertices
shown on the repeat boundary in figure 9. The ideal strong
overlap Cellular Assignment graph G,(V, E) corresponding
to the hexagonal repeat pattern of the embedding is a regular
bipartite toroidal graph with the 372 triangular grid vertices
as transceiver vertices T, and the 6r2 triangular cells as cell
segment vertices S, with V. =SUT.

Observation 5. The toroidal Cellular Assignment graph
G,(V, E) is aregular bipartite graph on V = S U T with the
|T| = 3r? vertices of T having degree six and the | S| = 61>
vertices of S having degree three. There are 9r2 edges in E.

Observation 6. The toroidal Cellular Assignment graph
G,(V, E) is edge symmetric. G,(V, E) is partially vertex
symmetric in that there is an isomorphism of G, (V, E) map-
ping any vertex of T C V into any other vertex of T, and an
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isomorphism mapping any vertex of S C V into any other
vertex of S.

The existence of this extensive symmetry provides a sim-
ple canonical graph for investigation both theoretically and
by simulation. Implementation of channel assignments by
distributed algorithms replicated at the transceivers and in
the mobile units is a beneficial by-product of this symmetry.
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